
29 October 2015 Motion Imagery Standards Board 1

1 Scope

This Standard (ST) describes the method for mapping floating point values to integer values and

the reverse, mapping integer values back to their original floating point value to within an

acceptable precision. There are many ways of optimizing the transmission of floating point

values from one system to another; the purpose of this ST is to provide a single method which

can be used for all floating point ranges and valid precisions. This ST provides a method for a

forward and reverse linear mapping of a specified range of floating point values to a specified

integer range of values based on the number of bytes desired to be used for the integer value.

Additionally it provides a set of special values which can be used to transmit non-numerical

“signals” to a receiving system. This ST is dependent on context from an invoking standard (or

other document), called a Parent Document.

2 References

The following references and the references contained therein are normative.

[1] IEEE, IEEE 754-2008 Standard for Floating-Point Arithmetic [and Floating-Point formats],

2008.

[2] MISB ST 0601.9 UAS Datalink Local Set, Oct 2015.

3 Terms and Definitions

Ceiling

Defined as rounding any non-integer value up toward +∞. The notation used is ⌈𝑥⌉ and the

ceiling function is defined as: ⌈𝑥⌉ = min{𝑛 ∈ ℤ|𝑛 ≥ 𝑥}. Examples: ⌈−1.1⌉ = −1; ⌈1.1⌉ = 2.

Note: Microsoft Excel (pre 2010) does not perform this operation correctly.

Floor

Defined as rounding any non-integer value down towards -∞. The notation used is ⌊𝑥⌋ and

the floor function is defined as: ⌊𝑥⌋ = max{𝑚 ∈ ℤ|𝑚 ≤ 𝑥}. Examples: ⌊−1.1⌋ = −2;

⌊1.1⌋ = 1. Note: Microsoft Excel (pre 2010) does not perform this operation correctly.

STANDARD

Floating Point to Integer Mapping

MISB ST 1201.2

29 October 2015

ST 1201.2 - Floating Point to Integer Mapping

29 October 2015 Motion Imagery Standards Board 2

Truncate

A function that removes the fractional part of a real number (e.g. truncate (100.2) = 100).

Round

A function has different modes but for this ST round means ⌊𝑥 + 0.5⌋ if x≥0 and ⌈𝑥 − 0.5⌉ if
x<0.

Precision (From [1])

The maximum number p of significant digits that can be represented in a format, or the

number of digits to that a result is rounded. Note: This is not the same definition that refers to

repeatability of measurements as used in other MISB documents and references.

4 Revision History

Revision Date Summary of Changes

ST 1201.2 10/29/2015
 Updated REQs -13 and -14

 Added REQs -16 and -17

 Deprecated REQ -09

5 Introduction - Informative

Many data values which are measured or computed in floating point are inserted into KLV for

transmission between systems. Oftentimes, values do not fully utilize the floating point range or

precision afforded, and thus there is opportunity to reduce the number of bytes used to represent

the data. Additionally, there are special cases in measurements and computations that need to be

communicated; for example, a sensor value that means “beyond measurement range” or in

computation when a divide by zero occurs (i.e. +infinity). This ST applies to IEEE 754 [1]

floating point values (all precisions; i.e. 16, 32, 64 and 128 bit), including many of the IEEE

special values of infinity, and NaN’s.

In Section 7 of this document the algorithm is succinctly stated for developers to implement;

Section 8 of this document is informative and shows the derivation of the algorithm and format.

6 Algorithm Requirements

To aid understanding some of the steps in the mapping described below, the requirements for the

algorithm are as follows:

Requirement

ST 1201.1-01 The binary representation of a floating point value shall be in the format of an IEEE
754-2008 floating point value.

ST 1201.1-02 The algorithm shall perform the mapping based on a [user] specified floating point
range from a min value to a max value – inclusive (including the end points).

ST 1201.1-03 The algorithm shall be a linear mapping from a floating point value to a non-
negative integer value of [user] defined length in bytes.

ST 1201.2 - Floating Point to Integer Mapping

29 October 2015 Motion Imagery Standards Board 3

ST 1201.1-04 The binary representation of a non-negative integer value shall be in the format of
a standard unsigned integer, with the length, in bytes, defined by the [user’s]
implementing Parent Document.

ST 1201.1-05 The algorithm shall provide an inverse mapping from a non-negative integer value
to the original floating point value within a [user] specified precision. (Note: the
mapping algorithm can supply better precision than what the user specifies. The
defined length and precision are related – given one the other can be computed but
both cannot be specified by the user).

ST 1201.1-06 If the [users] floating point range includes 0.0, then the algorithm shall map 0.0
exactly to a specific integer value, called a “zero offset”.

ST 1201.1-07 All floating point values that are negative shall map to an integer that is less that
the zero offset.

ST 1201.1-08 All values that are positive shall map to values greater than or equal to the zero
offset.

ST 1201.1-10 The resulting format shall provide a set of special values which map to the IEEE
754-2008 special values, including: ± infinity, ±QNan and ±SNan (note: negative
zero is not included in this requirement).

ST 1201.1-11 The resulting format shall provide a bit space for custom signals to be sent by the
user as defined by the [users] implementing Parent Document (e.g. ST 0601 [2]).

7 Mapping Algorithm and Integer Format

This section describes the algorithm for mapping the floating point values to integer values, and

the reverse mapping of integers back to floating point values. Additionally, this section defines

the notation to use in any MISB Parent Document when “invoking” this ST. Section 8 is an

informative section which describes the development of this algorithm in detail.

The algorithm is based on two steps as shown in Figure 1:

Figure 1: Functional view of the two-step conversion process

The first step computes one-time use constants, and the second step is the forward or reverse

mapping. There are two “starting points” for the first step. If the precision is known then the

desired length can be computed; otherwise, if the desired length is known it is used directly.

Both “starting points” require the floating point minimum and maximums to be defined. The

second step uses the constants computed from the first step to perform as many floating point-to-

integer and/or integer-to-floating point mappings as desired – provided the floating point

Compute

Length

Compute

Constants

Floating Point Minimum

Floating Point

Maximum

Floating Point

Precision
Length (Bytes)

Scaling Factor - Forward

Scaling Factor - Reverse

Offsets

Forward

Mapping

Reverse

Mapping

Floating Point

Number

Mapped

Integer

Floating Point

Number

Step 1

Step 2

 D
a

ta
 P

ro
v
id

e
r

 D
a

ta
 R

e
c
ie

v
e

r

Starting Point A Starting Point B

ST 1201.2 - Floating Point to Integer Mapping

29 October 2015 Motion Imagery Standards Board 4

minimum, maximum and length do not change. Figure 1 illustrates the interaction of the two

steps:

In Steps1 and 2 described in the sections below, the standard order of operations (i.e. operations

in parenthesis first, exponents/roots second, multiplication/division third, addition/subtraction

fourth) is assumed.

7.1 Step 1: Scaling Factors & Offsets

Step 1 has two starting points based on whether the floating point precision is known or the

length (in bytes) of the resulting mapped integer is known.

7.1.1 Starting Point A: Specifying Precision

Input

 a = Floating Point Minimum, range is from smallest float value to largest float value.

 b = Floating Point Maximum, range is from smallest float value to largest float value.

 g = Floating Point Precision, range is from zero to largest float value.

 Note: a<b and g<b-a

Algorithm
Compute Length L (Bytes)

1. Lbits = ceiling(log2((b-a)/g)+1) (note: +1 is for special values, see below)
2. L = ceiling(Lbits/8)
3. Follow steps in Starting Point B

7.1.2 Starting Point B: Specifying Length

Input

 a = Floating Point Minimum, range is from smallest float value to largest float value.

 b = Floating Point Maximum, range is from smallest float value to largest float value.

 L = Length of resulting mapped integer (note: this includes the extra bit for the special
values, see below)

 Note: a<b

Algorithm
Compute constants for forward and reverse mapping

1. bPow = ceiling(log2(b-a))

2. dPow = 8*L-1

3. sF = 2^(dPow -bPow)

4. sR = 2^(bPow- dPow)

5. Zoffset = 0.0

6. if (a<0 and b>0) then Zoffset = sF*a-floor(sF*a)

ST 1201.2 - Floating Point to Integer Mapping

29 October 2015 Motion Imagery Standards Board 5

7.2 Step 2: Forward and Reverse Mapping

Step 2 uses the values computed in Step 1 to do the forward mapping and reverse mapping. Note

that these operations are computationally optimal in that the actual mapping requires only one

multiply and two adds. Since the multiplication is by a power of two, it can be implemented as a

binary shift if necessary (i.e. in hardware constrained environments).

7.2.1 Forward Mapping

Input

 sF = Forward scaling factor (computed in Step 1)

 a = Floating Point Minimum

 Zoffset = Zero point offset (computed in Step 1)

 x = floating point value to map to integer y

Algorithm
Compute mapped integer value y

1. If x is a special value then:

y = Table Lookup to map to specified bit pattern (see Section 7.2.3 below).

2. Else x is a normal floating point number then:

a. y=truncate(sF*(x-a)+Zoffset)

i. Note: Since sF is a power of 2, a floating point shift can be used instead

of a multiplication.

ii. Note: y will need to be converted into L number of bytes values (i.e.

the lower L number of bytes is the “value” which needs to be sent.

Developer Notes

1) If doing a shift manually (i.e. the CPU does not support a floating point shift), the most
significant 1 bit of a floating point number is never explicitly represented in its mantissa, so it
must be OR’ed in before shifting when converting to an integer. As a simple example, the
mantissa for 6 is 1000..., it first becomes 11000..., then ...00000110.

2) An optimization of the forward mapping can be applied if it is known that no special values
are going to be used; the “special values check” and table look up can be omitted. The extra
bit (special value bit) must be preserved in the data format but the conditional check (step 1
above) can be removed.

ST 1201.2 - Floating Point to Integer Mapping

29 October 2015 Motion Imagery Standards Board 6

7.2.2 Reverse Mapping

Input

 sR = Reverse scaling factor (computed in step 1)

 a = Floating Point Minimum

 Zoffset = Zero point offset (computed in step 1)

 y = integer value to map to floating point value x

Algorithm
Compute mapped floating point value x

Define: Bit(q,y) = the qth bit of y. MSB = Most Significant Bit

1. special_value = Bit(MSB,y) & Bit(MSB-1,y)

2. If special_value equals 1 then

a. x=table lookup to map to specified floating point value (Section see 7.2.3

Table 2 below).

3. Else y is a normal value then

a. x=sR*(y-Zoffset)+a

i. Note: Since sR is a power of 2, a floating point shift can be used instead

of a multiplication.

Developer Notes

1) If doing a shift manually (i.e. the CPU does not support a floating point shift), the most
significant 1 bit of a floating point number is never explicitly represented in its mantissa, so it
must be OR’ed in before shifting when converting to an integer. As a simple example, the
mantissa for 6 is 1000..., it first becomes 11000..., then ...00000110.

2) There is an assumption that the length checking (which is typical for KLV parsing) has been
performed before applying these methods, see Section 7.4 for further information.

7.2.3 Special Value Mappings

In addition to normal numeric values this ST defines a list of special values that can be used to

indication special circumstances, such as a gimbal lock or division by zero, etc. There are a

couple of standardized values that are supported (based on IEEE-754) and a set of user definable

values that can be defined.

The first two bits indicate either a normal or special value as shown in Table 1. The MSB is zero

for all normal mapped values except for the maximum floating point value, b, (but this only

happens if (b-a), as specified by the user, is a power of 2).

ST 1201.2 - Floating Point to Integer Mapping

29 October 2015 Motion Imagery Standards Board 7

Table 1: Bit Patterns

Bits
Description bn

(MSB)
bn-1

bn-2 – b0

0 x x Normal mapped value. (x=1 or 0)

1 0 0
Normal mapped value but this is the max value of the normal mapping
values; this is the only normal value that has the MSB=1.

1 0 x (at least one x bit = 1) – Reserved section of bit space.

1 1 x Special value indicator (x=1 or 0) – see Table 2

If both the first and second MSB are set to one, then the third, fourth and fifth MSBs are used to

indicate which special value it is, as shown in Table 2. Since the mapped integer has fewer bytes

than the original floating point number not all the source NaN Identifiers can be passed; so at this

time there are no defined NaN Identifiers values except for one. NaN Identifiers will be defined

as needed by the MISB.

Table 2: Special Value Bit Patterns

Name Most Significant Bits Other
bits

Description - IEEE-754 values
(or user defined)

bn

(MSB)
bn-1

(Special)
bn-2

(Sign)
bn-3

(NaN)
bn-4 bn-5 – b0

+Infinity 1 1 0 0 1 Reserved Positive Infinity (+∞)

-Infinity 1 1 1 0 1 Reserved Negative Infinity (-∞)

+QNaN 1 1 0 1 0 NaN Id* Positive Quiet NaN (Not a Number)

-QNaN 1 1 1 1 0 NaN Id* Negative Quiet NaN

+SNaN 1 1 0 1 1 NaN Id*
Positive Signal NaN – Remaining bits are
used as the signal value.

-SNaN 1 1 1 1 1 NaN Id*
Negative Signal NaN - Remaining bits are
used as the signal value.

Reserved 1 1 1 0 0 Reserved Reserved

User
Defined

1 1 0 0 0
User

Defined
Remaining bits can be used for user defined
signals.

Reserved 1 0 1 X X Reserved Reserved

Note that the IEEE 754 value for negative zero is not sent as a special value; instead it is equated

to positive zero.

Requirement

ST 1201.1-12 All negative zero values shall be mapped to a positive zero and sent as a normal
(non-special) value.

ST 1201.2 - Floating Point to Integer Mapping

29 October 2015 Motion Imagery Standards Board 8

In addition to the IEEE bit values a set of user defined bit patterns is available for definition;

these can be used on a Parent Document basis. For example, in MISB ST 0601 the sensor

depression angle value could include a bit pattern which indicates gimbal lock; this bit pattern

would only be valid for that value in ST 0601.

*There is only one NaN Id defined at this time and that is to fill the bits bn-5 – b0 with zeros. The

MISB will define NaN Id’s as necessary when needed; please contact the MISB to define these

values. The values must be universally accepted and not special values for a specific processor or

application.

7.3 MISP and MISB Document Notation

When using or “invoking” this ST in a MISB Parent Document it is important to be clear as to

the starting point used, and the values used as “inputs”.

Requirement(s)

ST 1201.1-13 When the float precision is fixed within the implementing standard the notation
for Starting Point A shall be IMAPA (<min float>, <max float>, <float precision>).

ST 1201.2-16 When the float precision is computed or defined at runtime the notation for
Starting Point A shall be IMAPA (<min float>, <max float>).

ST 1201.1-14 When the length is fixed within the implementing standard the notation for
Starting Point B shall be IMAPB (<min float>, <max float>, <length bytes>)

ST 1201.2-17 When the length is computed or defined at runtime the notation for Starting Point
B shall be IMAPB (<min float>, <max float>)

ST 1201.1-15 When adding user defined bit patterns they shall be listed immediately after the
IMAPA or IMABP notation.

Example: Starting Point A:

o IMAPA(-200.0, 3000.0, 0.5)

o This means map a value in the range from -200.0 to 3000.0 using, at the

minimum, increments of 0.5.

Example: Starting Point A (with computed precision):

o IMAPA(-200.0, 3000.0)

o This means map a value in the range from -200.0 to 3000.0 using a precision that

is computed at runtime.

Example: Starting Point B:

o IMAPB(-200.0, 3.000, 3)

o This means map a value in the range from -200.0 to 3000.0 using 3 bytes (see

Section 7.4 for comments on length).

Example: Starting Point B (with computed length):

o IMAPB(-200.0, 3.000)

o This means map a value in the range from -200.0 to 3000.0 using a length that is

computed at runtime (see Section 7.4 for comments on length).

ST 1201.2 - Floating Point to Integer Mapping

29 October 2015 Motion Imagery Standards Board 9

7.4 Length Processing

The lengths computed or provided when defining the mapping (IMAPA, IMAPB) are considered

the recommended number of bytes to use. Depending on the form used to transmit KLV data

(Universal Sets, Local Sets, Individual Items), it is possible to have a different [KLV] length (L)

defined than the recommended [IMAP] length. When using a different length it is important to

compute the constants needed to do the forward and reverse mapping based on the KLV supplied

length.

8 Algorithm Development – Informative

The following sections discuss the development of the algorithm for this ST, and why it was

chosen.

1) Goal

2) Mapping and Inverse Mapping

3) Error Analysis

4) Simplification

5) Zero Matching

6) Computing d

7) Power of 2 adjustments for b

8) Computing L from Precision

9) Summary

8.1 Goal

The goal is to map any floating point range (FR) to an integer range (IR) with a chosen maximum

value of precision (g), smallest integer range (IR) and least amount of computation. In addition,

when a FR range includes zero the algorithm must map zero to a specific integer value (zero

offset), and all floating point values that are negative must map to values less than the zero

offset. Refer to Section 6 for the requirements for this algorithm.

Examples:

1) Map floating point range 0.1 to 3.1 to 2 bytes

2) Map -1.0 to +1.0 to 2 bytes

3) Map -0.5 to -0.3 to 1 byte

4) Map -3.14159265 to 3.14159265 to 4 bytes

5) Map floating point range 0.1 to 3.1 with precision of 0.01 or better

6) Map -1.0 to +1.0 to 2 bytes with precision of 0.001 or better

7) Map -0.5 to -0.3 to 1 byte with precision of 0.01 or better

8) Map -3.14159265 to 3.14159265 with precision of 0.00314159265 or better

8.2 Mapping and Inverse Mapping Definition

Given a 𝐹𝑅 = {𝑥 ∈ ℝ|𝑥 ∈ [𝑎, 𝑏]} and 𝐼𝑅 = {𝑦 ∈ ℤ|𝑦 ∈ [𝑐, 𝑑]}

ST 1201.2 - Floating Point to Integer Mapping

29 October 2015 Motion Imagery Standards Board 10

Let A(x) be a linear mapping from FR to IR and A-1(y) be a mapping from IR to FR.

Graphically this is shown in Figure 2, where A(x) (blue dotted line) maps from FR (x-axis) to IR

(y-axis) via the red line; A-1(y) (orange dotted line) maps from the IR (y-axis) to FR (x-axis) via

the red line.

Figure 2: A(x) maps FR to IR; A-1(x) maps IR to FR

Using the two-point method for defining the mapping:

(Eq 1) 𝑦 − 𝑦1 =
𝑦2−𝑦1

𝑥2− 𝑥1
(𝑥 − 𝑥1) = 𝑦 − 𝑐 =

𝑑−𝑐

𝑏−𝑎
 (𝑥 − 𝑎)

After rearranging, since y is an integer the right hand side of the equation must be truncated or

rounded before y is computed:

(Eq 2) 𝑦 = 𝐼 (
𝑑−𝑐

𝑏−𝑎
 (𝑥 − 𝑎) + 𝑐)

Function 𝐼() is either the truncation or rounding function (discussed in Section 8.3). Eq. 2

equation defines A(x) the forward mapping of any real value (floating point) range to an integer

range.

The inverse of Eq. 2 A-1(y) is defined as:

(Eq 3) 𝑥 = (𝑦 − 𝑐)
𝑏−𝑎

𝑑−𝑐
+ 𝑎

The above equations are for all a, b, c and d values; however, additional simplification and

improvements can be made, which are described in the following sections.

8.3 Error Analysis

The mapping function is not a one-to-one function, which means that the mapping and

subsequent inverse mapping introduce errors. For each value y, in IR, a unique range of x values

(in FR) is mapped to y. When the integer value y is inverse mapped back to an x value it will only

match one of the values of x. The tolerance of this error is dependent on the application, so it is

expected that the implementer of this ST will ensure that large enough c and d values are used to

create acceptable minimum error – more on this topic in other sections below. Figure 3 shows

the floating point range along with a subset of values (red) that get mapped to a single integer

]

]

]
]

a b

c

d

A(x)

A
-1

(x)

ST 1201.2 - Floating Point to Integer Mapping

29 October 2015 Motion Imagery Standards Board 11

value y. This also shows that the single integer value maps back to only one value in the floating

point range, xfinal (green).

Figure 3: Many-to-one forward mapping and one-to-one reverse mapping

Example 1:

Let a=0.0, b=5.0 and c=0, d=5; then 𝑦 = 𝐼 (
5−0

5.0−0.0
 (𝑥 − 0.0) + 0) = 𝐼 (

5

5
 𝑥) = 𝐼(𝑥)

For this example use I(x) = Truncate(x), now all values of the xoriginal range get mapped

to a single y value.

The inverse mapping, maps y to a single x value, xfinal:

If xoriginal = {all x in [1.0, 2.0)} then the mapped value y is 1, and the inverse mapped

value xfinal = 1.0 for all values in the xoriginal range.

To compute the amount of error: 𝐸(𝑥) = |𝑥 − 𝐴−1(𝐴(𝑥)) |. Graphing this error for Example 1

produces the saw-tooth graph shown in Figure 4.

Figure 4: Error in forward mapping of Example 1

The maximum error in Example 1 is just less than 1.0, and if this level of error is acceptable to

the implementer then this mapping function could be used. If less error is desired then it is a

simple matter to use a larger integer range; for example, if the range is doubled then the error is

cut in half.

There are multiple ways of converting a floating point number to an integer, including rounding,

truncating, round away from zero, round to zero, etc. Considering error the best conversion

technique is normal rounding as shown in Figure 5.

]

]

a b

]

]

c d

A
(x

)

A
-1

(y)

y

xoriginal

xfinal

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5

Error

Error

ST 1201.2 - Floating Point to Integer Mapping

29 October 2015 Motion Imagery Standards Board 12

Figure 5: Rounding versus Truncation error

However, to support the zero matching requirements a truncation must be used instead (see

Section 8.5), so (Eq 2) is changed to include truncation. Since x ranges from [a,b], all values of

(x-a) will be greater than or equal to zero so Truncate and Floor perform the same function.

Instead of Truncate notation, the Floor notation ⌊ ⌋ will be used throughout the remainder of

this section. Thus, Eq. 2 becomes:

(Eq 4) 𝑦 = ⌊
𝑑−𝑐

𝑏−𝑎
 (𝑥 − 𝑎) + 𝑐⌋

8.4 Simplifications

There are two simplifications to the above equations which will reduce overall (floating point)

errors and enable some optimizations (in future steps): shifting the integer range and shifting the

floating point range.

The integer range (IR) values, c and d, are arbitrary for this algorithm, so for all implementations

of this ST the mapping equations can be simplified by forcing the minimum integer value to

always equal zero. When c is zero then d is the maximum value desired by the implementer for

the desired precision. An additional benefit in a minimum value of zero is that the resulting value

cannot be negative, which means the computed value will be an unsigned integer requiring no

sign bit (nor 2’s complement formatting). Setting c=0 results in the following change to (Eq 4):

(Eq 5) 𝑦 = ⌊
𝑑

𝑏−𝑎
 (𝑥 − 𝑎)⌋

In a similar fashion the floating point range, FR, can also be shifted by using substitution, letting

x’=x-a. The range FR is shifted by a constant (-a) producing a new range called 𝐹𝑅
′ . 𝐹𝑅

′ =
{𝑥′ ∈ ℝ|𝑥′ ∈ [0, 𝑏′]} where a’=a-a=0 and b’ = b-a. With this change the minimum value of 𝐹𝑅

′ is

zero, so (Eq 5) and (Eq 3) are respectively simplified to:

(Eq 6) 𝑦 = ⌊
𝑑

𝑏′ 𝑥′⌋ = ⌊
𝑑

𝑏′
(𝑥 − a)⌋

(Eq 7) 𝑥 =
𝑏′

𝑑
 𝑦 + 𝑎

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

Error - Trucation

Error - Rounding

ST 1201.2 - Floating Point to Integer Mapping

29 October 2015 Motion Imagery Standards Board 13

8.5 Zero Matching

When the floating point range 𝐹𝑅
′ includes zero it is desirable to have that zero value directly map

to an integer in IR; this value is called the Zero Point and is noted as Izero; furthermore, all

negative values in FR should map to integers less than Izero and all positive values should map to

integers that are equal to or greater than Izero.

Example 2:

If FR = -0.9 to 1.1 and d=11 then the following values would be mapped:

Note: g=2.0/11 = 0.1818

Table 3: Various mappings for Example 2

x x' (d/b')x' Ceiling Floor Truncate Round

-0.9 0 0 0 0 0 0

-0.71818 0.181818 1 1 1 1 1

-0.53636 0.363636 2 2 2 2 2

-0.35455 0.545455 3 3 3 3 3

-0.17273 0.727273 4 4 4 4 4

-0.08182 0.818182 4.5 5 4 4 5

0 0.9 4.95 5 4 4 5

0.009091 0.909091 5 5 5 5 5

0.1 1 5.5 6 5 5 6

0.190909 1.090909 6 6 6 6 6

0.372727 1.272727 7 7 7 7 7

0.554545 1.454545 8 8 8 8 8

0.736364 1.636364 9 9 9 9 9

0.918182 1.818182 10 10 10 10 10

1.1 2 11 11 11 11 11

In Table 3 the red row shows the zero value is computed as 0.9, then, based on the integer

conversion technique it gets mapped to the same value as a preceding negative value (in yellow);

the Zero Point is undefined, since after the linear computation the resulting value was not an

integer. This behavior is undesirable; instead, the zero in FR should be mapped exactly to an

integer (before integer conversion) – this value would be the Zero Point, Izero. Additionally, all

negative values in FR should be mapped to integers less than Izero.

To solve this issue the whole mapping equation is shifted upward, so that zero in FR becomes an

integer value (Izero); this is just a simple offset that is added before the integer conversion.

Furthermore, in order to ensure that all negative values are below Izero, truncation (or floor) must

be performed for the integer conversion; ceiling and rounding will force negative values to be

ST 1201.2 - Floating Point to Integer Mapping

29 October 2015 Motion Imagery Standards Board 14

identical to Izero. Note that this is different than changing the bounds (a,b or c,d) of the equations;

the slope of the linear mapping is not affected by this change.

The adjustment to the mapping equations (Eq 5) and (Eq 6) are:

(Eq 8) Zoffset =
𝑑

𝑏′ 𝑎 − ⌊
𝑑

𝑏′ 𝑎⌋ , Note: 0.0 ≤ Zoffset < 1.0

(Eq 9) 𝑦 = ⌊
𝑑

𝑏′ (x − a) + 𝑍offset⌋

(Eq 10) 𝑥 =
𝑏′

𝑑
 (𝑦 − 𝑍offset) + a

Re-computing Example 2 with these changes results in:

Zoffset =
11

2.0
(−0.9) − ⌊

11

2.0
(−0.9)⌋ = −4.95 − (−5.0) = 0.05

Table 4 shows the Zero Point (Izero) is the value 5; all negative x values map to 4 or less and all

positive values (and zero) map to 5 or greater.

Table 4: Example 2 recomputed using Zoffset

x x' (d/b')x' + Zoffset Ceiling Floor Truncate Round

-0.9 0 0.05 1 0 0 0

-0.71818 0.181818 1.05 2 1 1 1

-0.53636 0.363636 2.05 3 2 2 2

-0.35455 0.545455 3.05 4 3 3 3

-0.17273 0.727273 4.05 5 4 4 4

-0.08182 0.818182 4.55 5 4 4 5

0 0.9 5 5 5 5 5

0.009091 0.909091 5.05 6 5 5 5

0.1 1 5.55 6 5 5 6

0.190909 1.090909 6.05 7 6 6 6

0.372727 1.272727 7.05 8 7 7 7

0.554545 1.454545 8.05 9 8 8 8

0.736364 1.636364 9.05 10 9 9 9

0.918182 1.818182 10.05 11 10 10 10

1.1 2 11.05 12 11 11 11

8.6 Computing d

In all the previous equations, the value d, is computed from the number of bytes that the user

specified with value L. The value d uses all of the bits in the bytes specified including the most

significant bit (MSB); however, the MSB is only used for one value when mapping the floating

point values. When mapping the largest floating point value, b, the MSB may be used if b was

specified [by the user] as a power of 2. In this case the MSB is set to 1 and all other bits are set to

ST 1201.2 - Floating Point to Integer Mapping

29 October 2015 Motion Imagery Standards Board 15

zero. All other uses of the MSB are used to signal special values which are described in Section

7.2.3.

(Eq 11) Nbits = 8 ∗ 𝐿 − 1

(Eq 12) 𝑑 = 2Nbits

(Eq 12) shows that d is a power of two, which will be used for an optimization step described in

Section 8.7.

8.7 Power of 2 Adjustment for b

To improve algorithm efficiency the floating point range, FR, is adjusted to be a power of 2;

however, when this adjustment is made the precision is reduced and the resulting error increases

slightly.

Examining the equation for the mapping shows that the mapping is primarily a simple division,

multiplication and addition: 𝑦 = ⌊
𝑑

𝑏′ (𝑥 − 𝑎) + 𝑍offset⌋. Floating point division and

multiplication can easily introduce small numeric floating point rounding errors. To reduce this

error and to provide a more efficient algorithm b' is adjusted to be based on a power of two.

(Eq 13) �̅� = 2⌈𝑙𝑜𝑔2𝑏′⌉

With the adjustments to b' (Eq 9) and (Eq 10) are updated as follows:

(Eq 14) 𝑦 = ⌊
𝑑

�̅�
(x − a) + 𝑍offset⌋

(Eq 15) 𝑥 =
�̅�

𝑑
 (𝑦 − 𝑍offset) + a

Since d and �̅� are both powers of two, a small optimization can be made by pre-computing

forward and reverse scaling factors:

(Eq 16)
𝑑

�̅�
= 𝑆𝐹 = 2(𝑁𝑏𝑖𝑡𝑠− ⌈𝑙𝑜𝑔2𝑏′⌉)

(Eq 17)
�̅�

𝑑
= 𝑆𝑅 = 2(⌈𝑙𝑜𝑔2𝑏′⌉−𝑁𝑏𝑖𝑡𝑠)

Now (Eq 14) and (Eq 15) are adjusted and the final mapping equations are complete:

(Eq 18) 𝑦 = ⌊SF(x − a) + 𝑍offset⌋

(Eq 19) 𝑥 = SR (𝑦 − 𝑍offset) + a

8.8 Computing L from known precision

When using these equations there are two starting points that can be defined based either on: (a)

the minimum, maximum and known floating point precision, or (b) the minimum, maximum and

desired length. The preceding sections describe the steps for computing scaling factors based on

(b), knowing the minimum, maximum and number of bytes (L). This section shows the

ST 1201.2 - Floating Point to Integer Mapping

29 October 2015 Motion Imagery Standards Board 16

computation of L based on the known minimum, maximum and known floating point precision

(i.e. starting point (a)).

Given a, b and g; where a is the minimum value of the range, b is the maximum value of the

range and g is the floating point precision to use, then the number of bytes, L, needed to

represent this number for the mapping is:

(Eq 20) Lbits = ⌈𝑙𝑜𝑔2(
𝑏−𝑎

𝑔
)⌉ + 1 Note: +1 is for special values bit.

(Eq 21) L = ⌈
Lbits

8
⌉

This value of L is used in (Eq 11).

8.9 Summary

The following shows a consolidation of all of the equations needed to map values to and from

floating point to integer.

Starting Point A: User specifies a, b and g (the desired precision to use)

One time computation:

Lbits = ⌈𝑙𝑜𝑔2(
𝑏 − 𝑎

𝑔
)⌉ + 1

L = ⌈
Lbits

8
⌉

Now a, b and L are defined for starting point B.

Starting Point B: User specifies, a, b and L (number of bytes to use)

One time computation:

𝑏𝑝𝑜𝑤 = ⌈𝑙𝑜𝑔2(𝑏 − 𝑎)⌉

𝑑𝑝𝑜𝑤 = 8 ∗ 𝐿 − 1 (Number of bits for d)

𝑆𝐹 = 2(𝑑𝑝𝑜𝑤− 𝑏𝑝𝑜𝑤) (Scaling for forward mapping, note same as bitwise shift)

𝑆𝑅 = 2(𝑏𝑝𝑜𝑤−𝑑𝑝𝑜𝑤) (Scaling for reverse mapping, note same as bitwise shift)

Zoffset = 0 (Default offset to zero)

If (a<0 and b>0) then Zoffset = 𝑆𝐹𝑎 − ⌊𝑆𝐹𝑎⌋ (only compute if condition met)

Once the above values, SF, SR and Zoffset are computed they are used for forward mapping and

reverse mapping every x and y value, respectively.

ST 1201.2 - Floating Point to Integer Mapping

29 October 2015 Motion Imagery Standards Board 17

Per x value:

𝑦 = ⌊𝑆𝐹(𝑥 − 𝑎) + 𝑍offset⌋

Per y value:

𝑥 = 𝑆𝑅(𝑦 − 𝑍offset) + 𝑎

See Section 7.2.3 for information on handling special values (i.e. infinity, NaN, etc.) of x and y.

9 Deprecated Requirements

The following requirement is deprecated because it is not testable.

Requirement

ST 1201.1-09
(Deprecated)

The algorithm shall be designed to be as few operations as possible (during the
actual mapping) for computational efficiency.

10 Appendix A – Usage Examples

Table 5 shows some examples of ranges, precisions or number of bytes that could be used along

with the IMAP notation used in an invoking document.

Table 5: Usage examples

Name Min Max Precision
Number of

Bytes
IMAP Statement

Altitude -900.0 19000.0 Don’t care 2 IMAPB(-900, 19000, 2)

Covariance -1.0 1.0 Don’t care 2 IMAPB(-1, 1, 2)

Radians -3.14159265 3.14159265 Don’t care 3
IMAPB(-3.14159265,

3.14159265, 3)

Altitude -900.0 19000.0 0.5 Don’t care IMAPA(-900, 19000, 0.5)

Covariance -1.0 1.0 .0001 Don’t care IMAPA(-1, 1, .0001)

Radians -3.14159265 3.14159265 0.00314159265 Don’t care
IMAPA(-3.14159265,

3.14159265,
0.00314159265)

Small Range 0.1 0.9 Don’t care 2 IMAPB(0.1, 0.9, 2)

The following illustrates a complete example of the computations for mapping an altitude range

using, IMAPA(-900, 19000, 0.5).

Example 3: Altitude (Starting point A):

 a = Floating Point Minimum = -900.0

 b = Floating Point Maximum = 19,000.0

 g = Floating Point Precision = 0.5

ST 1201.2 - Floating Point to Integer Mapping

29 October 2015 Motion Imagery Standards Board 18

Starting Point A - Algorithm: Compute Length L (Bytes)

1. Lbits = Ceiling(log2((b-a)/g)+1) = Ceiling(log2((19,000-(-900))/0.5)+1) = 17

2. L = Ceiling(Lbits/8) = Ceiling(17/8) = 3

3. Follow steps in Starting Point B

Starting Point B - Algorithm: Compute sF, sR and Zoffset

1. bPow = Ceiling(log2(b-a)) = Ceiling(log2(19,000-(-900))) = 15

2. dPow = 8*L-1 = 8*3-1 = 23

3. sF = 2^(dPow -bPow) = 2^(23-15) = 2^8

4. sR = 2^(bPow- dPow) = 2^(15-23) = 2^(-8)

5. Zoffset = 0.0

6. if (a<0 and b>0) then Zoffset = sF*a-Floor(sF*a)

 = (2^8)*(-900)-Floor((2^8)*(-900)) = 0.0

Forward Mapping: Let x = 10.0 (underlined section is the algorithm that is exercised)

1. If x is a special value then:

y = Table Lookup to map to specified bit pattern

2. Else x is a normal floating point number then:

y = Truncate(sF*(x-a)+Zoffset) = Truncate(2^8*(10.0-(-900))+0.0) = 232,960

 = 0x03 8E00

Reverse Mapping: Let y = 232,960 = 0x03 8E00

Define: Bit(q,y) = the qth bit of y. MSB = Most significant bit

1. special_value = Bit(MSB,y) & Bit(MSB-1,y) = 0 & 0

2. If special_value equals 1 then:

x = Table Lookup to map to specified floating point value

3. Else y is a normal value then:

x = sR*(y-Zoffset)+a = (2^(-8)) * (232,960-0.0) + (-900) = 10.0

Table 6 shows some forward mapping and reverse mapping values for this example.

Table 6: Forward/Reverse mapping for Example 3

x y y (hex) x mapped back

-900.0 0 0x00 0000 -900.0

0.0 230,400 0x03 8400 0.0

10.0 232,960 0x03 8E00 10.0

-infinity See hex 0xE8 0000 -infinity

The following illustrates a complete example of the computations for mapping the small range

using, IMAPB(0.1, 0.9, 2).

ST 1201.2 - Floating Point to Integer Mapping

29 October 2015 Motion Imagery Standards Board 19

Example 4: Small range (Starting point B):

 a = Floating Point Minimum = 0.1

 b = Floating Point Maximum = 0.9

 L = 2 bytes

Starting Point B - Algorithm: Compute sF, sR and Zoffset

1. bPow = Ceiling(log2(b-a)) = Ceiling(log2(0.9-(0.1))) = 0

2. dPow = 8*L-1 = 8*2-1 = 15

3. sF = 2^(dPow -bPow) = 2^(15-0) = 2^15

4. sR = 2^(bPow- dPow) = 2^(0-15) = 2^(-15)

5. Zoffset = 0.0

6. if (a<0 and b>0) then Zoffset = sF*a-Floor(sF*a)

Forward Mapping: Let x = 0.5 (underlined section is the algorithm that is exercised)

1. If x is a special value then:

y = Table Lookup to map to specified bit pattern

2. Else x is a normal floating point number then:

y = Truncate(sF*(x-a)+Zoffset) = Truncate(2^15*(0.5-(0.1))+0.0) = 13,107

 = 0x3333

Reverse Mapping: Let y = 13,107 = 0x3333

Define: Bit(q,y) = the qth bit of y. MSB = Most significant bit

1. special_value = Bit(MSB,y) & Bit(MSB-1,y) = 0 & 0

2. If special_value equals 1 then:

x = Table Lookup to map to specified floating point value

3. Else y is a normal value then:

x = sR*(y-Zoffset)+a = (2^(-15)) * (13,107-0.0) + (0.1) = 0.499993896484375

Table 7 shows some forward mapping and reverse mapping values for this example.

Table 7: Forward/Reverse mapping for Example 4

x y y (hex) x mapped back Error

0.1 0 0x0000 0.1 0.0

0.5 13,107 0x3333 0.499993896484375 6.10e-6

0.9 26,214 0x6666 0.89998779296875 1.22e-5

-infinity See hex 0xE800 -infinity n/a

11 Appendix B – Java Code Example

Available upon request.

